<em id="od2go"></em>

    1. 呼和浩特民族學(xué)院 數(shù)學(xué)與大數(shù)據(jù)學(xué)院 歡迎您!

      今天是

      數(shù)學(xué)與大數(shù)據(jù)學(xué)院
      學(xué)校首頁

      當(dāng)前位置:

      首頁  >  科研成果  >  正文

      額爾敦布和教授學(xué)術(shù)研究代表成果

      來源: 發(fā)布時(shí)間:2016-11-05

      字體大小

      打印本頁

      [1] Eerdun Buhe*, G. Bluman, A.H. Kara. Conservation laws for some systems of nonlinear PDEs via the symmetry/adjoint symmetry pair method, Journal of Mathematical Analysis and Applications, 2016, 436(1):94-103(SCI).

      [2] Eerdun Buhe*, G. Bluman. Symmetry reductions, exact solutions and conservation laws of the generalized Zakharov equations, Journal of Mathematical Physics, 2015, Vol.56(10): 101501(SCI). * FEATURED ARTICLE

      [3] Eerdunbuhe, Eerdunqiqige, Huhebala, Wang Jingyu, Temuerchaolu. Variational iteration method with He's polynomials for MHD Falkner-Skan flow over permeable wall based on Lie symmetry method,International Journal of Numerical Methods for Heat & Fluid Flow, 2014, Vol. 24(6): 1348-1362 (SCI).

      [4] Eerdunbuhe, Temuerchaolu. Approximate solution of the magneto -hydrodynamic flow over a nonlinear stretching sheet,Chinese Physics B、2012,Vol.21 (3): 035201 (SCI).

      [5] Eerdun Buhe, K. Fakhar, Gangwei Wang, Temuer Chaolu. Double reduction of the generalized Zakharov equations via conservation lawsRomanian Reports in Physics, 2015, Vol.67(2): 329-339 (SCI).

      [6] Eerdun Buhe, Gangwei Wang, Xiu Bai. Symmetry analysis and conservation laws of the quantum Zakharov equations for plasma, Romanian Journal of Physics, 2015, Vol.60(9-10),1361-1373 (SCI).

      [7]Eerdunbuhe, Temuerchaolu: Approximate Solitary Wave Solutions For a Perturbed BBM Equation by a Hybrid Approach, ICIC 2010-3rd International Conference on Information and Computing, Vol.1, 294-297, June 4- 6, 2010 Wuxi, Jiang Su, China (EI).

      [8] Eerdunbuhe, Temuerchaolu: Variational Iteration Method for the Magneto -Hydrodynamic Nano-flow Over a Nonlinear Stretching Sheet Using He's Polynomials, Advanced Science Letters, 2012,10: 635-639

      [9] Eerdunbuhe, Temuerchaolu: An exact solution of smooth initial value problems for WBKs by the renormgroup symmetry method, 黑龍江大學(xué)自然科學(xué)學(xué)報(bào),2012,294):455-459.

      [10] 額爾敦布和、特木爾朝魯:偏微分方程(組)守恒律的再擴(kuò)充,內(nèi)蒙古大學(xué)學(xué)報(bào),2008.395):481-487.

      [11] Eerdunbuhe, Temuerchaolu: Numerical Simulation of the Travelling Wave Solutions for two Nonlinear Evolution Equations by Homotopy Perturbation Method,內(nèi)蒙古大學(xué)學(xué)報(bào),2008.395):481-487.

      [12] Eerdunbuhe, Bai Xiu, Eerdunqiqige. A variational-Adomian iteration method for solving the MHD flow over a nonlinear stretching sheet, 內(nèi)蒙古大學(xué)學(xué)報(bào)(自然科學(xué)版),2014, 45(3): 231-238.

      [13] Eerdunbuhe, Temuerchaolu. A generalized (G'/G)--expansion method and its applications to the Whitham-Broer-Kaup-Like equations, 內(nèi)蒙古師范大學(xué)學(xué)報(bào)(自然科學(xué)版), 2012,41(2): 120 -131.

      [14]白秀,額爾敦布和*耗散量子Zakharov方程的對(duì)稱約化和守恒律,內(nèi)蒙古大學(xué)學(xué)報(bào)自然科學(xué)版,2016

      [15] 額爾敦布和,特木爾朝魯,白玉梅: 利用改進(jìn)的擴(kuò)展tanh函數(shù)方法求解非線性發(fā)展方程()的行波解(英文),內(nèi)蒙古民族大學(xué)學(xué)報(bào)(自然科學(xué)版)2011,02):125-133.

      [16]特木爾朝魯、額爾敦布和、鄭麗霞,擴(kuò)充偏微分方程(組)守恒律和對(duì)稱的輔助方程方法及微分形式吳方法的應(yīng)用,應(yīng)用數(shù)學(xué)學(xué)報(bào),2007,305):910-927.

      [17] Wang Gangwei, A. H. Kara, Eerdunbuhe, K. Fakhar. Group Analysis and Conservation Laws of a Coupled System of Partial Differential Equations Describing the Carbon Nanotubes Conveying Fluid, Romanian Journal of Physics, 2015, 60(7-8): 1-10.(SCI)

      [18] 特木爾朝魯,額爾敦布和,夏鐵成. 具源項(xiàng)的波動(dòng)方程的非古典對(duì)稱,數(shù)學(xué)年刊,2012,33A(2): 193-204.


      两性色午夜免费视频,国产中文字幕av,欧美中亚洲中文日韩,中文日韩欧美州
      <em id="od2go"></em>